A new research paper accepted in the Energy and Environmental Science Journal

ENERGY-ENVIRONMENTAL-SCIENCE-JOURNAL

 

Congratulations to Panos Trogadas, Jason Cho, Toby Neville, Prof. Dan Brett and Prof. Marc-Olivier Coppens to new paper:


A lung-inspired approach to scalable and robust fuel cell design

 

Abstract

A lung-inspired approach is employed to overcome reactant homogeneity issues in polymer electrolyte fuel cells. The fractal geometry of the lung is used as the model to design flow-fields of different branching generations, resulting in uniform reactant distribution across the electrodes and minimum entropy production of the whole system. 3D printed, lung-inspired flow field based PEFCs with N = 4 generations outperform the conventional serpentine flow field designs at 50% and 75% RH, exhibiting a ∼20% and ∼30% increase in performance (at current densities higher than 0.8 A cm−2) and maximum power density, respectively. In terms of pressure drop, fractal flow-fields with N = 3 and 4 generations demonstrate ∼75% and ∼50% lower values than conventional serpentine flow-field design for all RH tested, reducing the power requirements for pressurization and recirculation of the reactants. The positive effect of uniform reactant distribution is pronounced under extended current-hold measurements, where lung-inspired flow field based PEFCs with N = 4 generations exhibit the lowest voltage decay (∼5 mV h−1). The enhanced fuel cell performance and low pressure drop values of fractal flow field design are preserved at large scale (25 cm2), in which the excessive pressure drop of a large-scale serpentine flow field renders its use prohibitive

 

 

 


She will use ARCHER supercomputer for 6 months to study behavior of biomolecules confined in ordered amorphous silica through all-atom molecular dynamic simulations with explicit water and counter-ions.The simulations will provide a better understanding of the interplay between the adsorbed proteins and mesoporous materials which is necessary to improve drug delivery systems by improving stability and controlled release of the active drug at the site of interest.